dc.date.accessioned2019-01-29T22:19:50Z
dc.date.accessioned2023-05-30T23:27:33Z
dc.date.available2019-01-29T22:19:50Z
dc.date.available2023-05-30T23:27:33Z
dc.date.created2019-01-29T22:19:50Z
dc.date.issued2017
dc.identifierurn:isbn:9781509063628
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15780
dc.identifierhttps://doi.org/10.1109/INTERCON.2017.8079724
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477593
dc.description.abstractThe presence of outliers, noise, corrupt pieces of data and great quantity of samples in a multispectral image, makes the segmentation analysis work tedious. The fuzzy clustering approach, specially, is susceptible to inhomogeneity of characteristics. Furthermore, many algorithms such us FCM, PFCM, FCC, FWCM and modification aim to solve these problems by integrating spacial information. This process is carried through the analysis of the sample's neighborhood. This paper proposes the integration of the sample presence probability into a 'term' like form inside the existent model NFCC. This algorithm presents the basic steps for fuzzy clustering. With a middle variant that integrates the measure between each sample to all the centroids, this replaces the existent term by a new term. This new term integrates the spatial relationship between each sample of the multispectral image into a fitting term. The method is applied to multispectral images. Overall accuracy indicates that the term integrated to NFCC model decrease the overall cluster overlapping. © 2017 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85039985402&doi=10.1109%2fINTERCON.2017.8079724&partnerID=40&md5=ffee478f08343cf6495a05d0126ad124
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectClassification (of information)
dc.subjectFuzzy clustering
dc.subjectCluster centroids
dc.subjectClustering approach
dc.subjectMultispectral images
dc.subjectProbability informations
dc.subjectSatellite images
dc.subjectSegmentation analysis
dc.subjectSpatial relationships
dc.subjectUnsupervised classification
dc.subjectImage segmentation
dc.titleMultispectral images segmentation using new fuzzy cluster centroid modified
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución