dc.date.accessioned2019-01-29T22:19:49Z
dc.date.accessioned2023-05-30T23:27:31Z
dc.date.available2019-01-29T22:19:49Z
dc.date.available2023-05-30T23:27:31Z
dc.date.created2019-01-29T22:19:49Z
dc.date.issued2018
dc.identifierurn:isbn:9783030039271
dc.identifier3029743
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15768
dc.identifierhttps://doi.org/10.1007/978-3-030-03928-8_35
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477581
dc.description.abstractSentiment Analysis has been extensively researched in the last years. While important theoretical and practical results have been obtained, there is still room for improvement. In particular, when short sentences and low resources languages are considered. Thus, in this work we focus on sentiment analysis for Spanish Twitter messages. We explore the combination of several word representations (Word2Vec, Glove, Fastext) and Deep Neural Networks models in order to classify short texts. Previous Deep Learning approaches were unable to obtain optimal results for Spanish Twitter sentence classification. Conversely, we show promising results in that direction. Our best setting combines data augmentation, three word embeddings representations, Convolutional Neural Networks and Recurrent Neural Networks. This setup allows us to obtain state-of-the-art results on the TASS/SEPLN Spanish benchmark dataset, in terms of accuracy. © Springer Nature Switzerland AG 2018.
dc.languageeng
dc.publisherSpringer Verlag
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057122520&doi=10.1007%2f978-3-030-03928-8_35&partnerID=40&md5=db7e538bea67ed5945193b24af816b0b
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectData mining
dc.subjectRecurrent neural networks
dc.subjectSentiment analysis
dc.subjectSocial networking (online)
dc.subjectBenchmark datasets
dc.subjectConvolutional neural network
dc.subjectData augmentation
dc.subjectLearning approach
dc.subjectNeural networks model
dc.subjectSentence classifications
dc.subjectTwitter sentences
dc.subjectWord representations
dc.subjectDeep neural networks
dc.titleDeep neural network approaches for Spanish sentiment analysis of short texts
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución