dc.creatorPérez, María Eglée
dc.creatorPericchi Guerra, Luis R.
dc.date2014-04-11T18:41:46Z
dc.date2014-04-11T18:41:46Z
dc.date2014-02
dc.date.accessioned2017-03-17T16:54:05Z
dc.date.available2017-03-17T16:54:05Z
dc.identifierhttp://hdl.handle.net/10586 /355
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/647491
dc.descriptionWe put forward an adaptive alpha which changes with the amount of sample information. This calibration may be interpreted as a Bayes–non-Bayes compromise, and leads to statistical consistency. The calibration can also be used to produce confidence intervals whose size takes in consideration the amount of observed information.
dc.descriptionNIH Grant: P20-RR016470. M.E. Pérez’s research was also sponsored by NSF Grant: HRD 0734826.
dc.languageen_US
dc.publisherStatistics & Probability Letters
dc.relationVol. 85;
dc.subjectSignificance principle
dc.subjectPosterior probability principle
dc.subjectBayes–non-Bayes compromise
dc.subjectp -value calibration
dc.subjectAdaptive confidence level
dc.titleChanging Statistical Significance with the Amount of Information: The Adaptive α Significance Level
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución