dc.creatorRivera Hazim, Edwardo S.
dc.creatorOrozco, Edusmildo (Mentor)
dc.creatorOrdóñez, P. (Mentor)
dc.date2013-03-13T19:33:02Z
dc.date2013-03-13T19:33:02Z
dc.date2013-03-01
dc.date.accessioned2017-03-17T16:53:58Z
dc.date.available2017-03-17T16:53:58Z
dc.identifierhttp://hdl.handle.net/10586 /318
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/647457
dc.descriptionData mining algorithms are crucial in the analysis of many real data-intensive problems. The Symbolic Aggregate Approximation (SAX) algorithm is being used widely by researchers to analyze time series and streaming data. Previous work done by P. Ordóñez et. al. has shown that it is possible to classify a patient's data by using a combination of SAX and the Bag-of-Patterns algorithm (BoP). To our knowledge, parallel implementations for these algorithms have not been proposed yet.
dc.descriptionNational Science Foundation, XXVIII Seminario Interuniversitario de Investigación en Ciencias Matemáticas, Universidad Metropolitana, UPR
dc.languageen_US
dc.publisherSeminario Interuniversitario de Investigación en Ciencias Matemáticas (SIDIM)
dc.subjectSymbolic Aggregate Approximation
dc.subjectNR Algorithm
dc.subjecttime series
dc.subjectstreaming data.
dc.titleOn Parallel Methods for Classifying Time Series Data
dc.typeOtro


Este ítem pertenece a la siguiente institución