dc.creatorChamorro-Atalaya, Omar
dc.creatorOlivares-Zegarra, Soledad
dc.creatorParedes-Soria, Alejandro
dc.creatorSamanamud-Loyola, Oscar
dc.creatorAnton-De los Santos, Marco
dc.creatorAnton-De los Santos, Juan
dc.creatorFierro-Bravo, Maritte
dc.creatorVillanueva-Acosta, Victor
dc.date.accessioned2022-03-02T13:51:34Z
dc.date.accessioned2023-05-30T23:13:54Z
dc.date.available2022-03-02T13:51:34Z
dc.date.available2023-05-30T23:13:54Z
dc.date.created2022-03-02T13:51:34Z
dc.date.issued2021-12
dc.identifierChamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289
dc.identifier2156-5570
dc.identifierhttps://hdl.handle.net/20.500.13067/1681
dc.identifierInternational Journal of Advanced Computer Science and Applications (IJACSA)
dc.identifierhttps://doi.org/10.14569/IJACSA.2021.0121289
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6473924
dc.description.abstract—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.
dc.languageeng
dc.publisherThe Science and Information Organization
dc.publisherPE
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceAUTONOMA
dc.source12
dc.source12
dc.source718
dc.source725
dc.subjectClassification learner
dc.subjectPredictive system
dc.subjectPersonal and social attitudes
dc.subjectEngineering students
dc.titleSupervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución