dc.creatorNieto-Chaupis, Huber
dc.date.accessioned2022-03-03T17:59:12Z
dc.date.accessioned2023-05-30T23:11:50Z
dc.date.available2022-03-03T17:59:12Z
dc.date.available2023-05-30T23:11:50Z
dc.date.created2022-03-03T17:59:12Z
dc.date.issued2020
dc.identifierNieto-Chaupis, H. (2019, December). Data Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria. In International Conference on Smart Technologies, Systems and Applications (pp. 364-374). Springer, Cham.
dc.identifier978-3-030-46785-2
dc.identifierhttps://hdl.handle.net/20.500.13067/1714
dc.identifierCommunications in Computer and Information Science
dc.identifierhttps://doi.org/10.1007/978-3-030-46785-2_29
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6473177
dc.description.abstractCommonly the searching and identification of new particles, requires to reach highest efficiencies and purities as well. It demands to apply a chain of cuts that reject the background substantially. In most cases the processes to extract signal from the background is carried out by hand with some assistance of well designed and intelligent codes that save time and resources in high energy physics experiments. In this paper we present one application of the Mitchell’s criteria to extract efficiently beyond Standard Model signal events yielding an error of order of 1.22%. The usage of Machine Learning schemes appears to be advantageous when large volumes of data need to be scrutinized.
dc.languageeng
dc.publisherSpringer
dc.publisherPE
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084805724&doi=10.1007%2f978-3-030-46785-2_29&partnerID=40&md5
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceAUTONOMA
dc.source1154
dc.source364
dc.source374
dc.subjectData analysis
dc.subjectParticle Physics Experiments
dc.subjectMachine learning
dc.titleData Analysis of Particle Physics Experiments Based on Machine Learning and the Mitchell’s Criteria
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución