dc.creatorNieto-Chaupis, Huber
dc.date.accessioned2022-03-03T15:34:43Z
dc.date.accessioned2023-05-30T23:11:25Z
dc.date.available2022-03-03T15:34:43Z
dc.date.available2023-05-30T23:11:25Z
dc.date.created2022-03-03T15:34:43Z
dc.date.issued2020-09-01
dc.identifierNieto-Chaupis, H. (2020, July). Nanodevices Based on Quantum Mechanics and Classsical Electrodynamics as Vascular Endothelial Growth Blockers to Detain Angiogenesis. In 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 481-485). IEEE.
dc.identifier978-1-7281-9429-5
dc.identifier2372-9198
dc.identifierhttps://hdl.handle.net/20.500.13067/1708
dc.identifier2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)
dc.identifierhttps://doi.org/10.1109/CBMS49503.2020.00097
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6473019
dc.description.abstractThe processes of angiogenesis have among their initial phases the processes such as the vascular endothelial growth (VEG) in order to guarantee the consistent sprouting and splitting of new blood vessels whose main purpose is the fueling of tumor. In this paper we develop a technique entirely based on Quantum Mechanics and Classical Electrodynamics to tackle down scenarios of anomalous growth of vessels. In conjunction to Classical Electrodynamics, we use Quantum Mechanics calculations to a more accurate prediction of the location and the subsequent detaining of anomalous growth of vessels that give rises to angiogenesis. For nanodevices whose size is of order of 10nm, the probability to identify a tube from VEG might be of order of 16%.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.publisherPE
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091152355&doi=10.1109%2fCBMS49503.2020.00097&partnerID=40
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceAUTONOMA
dc.source481
dc.source485
dc.subjectNanoscale devices
dc.subjectElectric potential
dc.subjectQuantum mechanics
dc.subjectElectrodynamics
dc.subjectTumors
dc.subjectCancer
dc.subjectMorphology
dc.titleNanodevices Based on Quantum Mechanics and Classsical Electrodynamics as Vascular Endothelial Growth Blockers to Detain Angiogenesis
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución