dc.creatorNieto-Chaupis, Huber
dc.date.accessioned2022-01-25T21:35:16Z
dc.date.accessioned2023-05-30T23:11:03Z
dc.date.available2022-01-25T21:35:16Z
dc.date.available2023-05-30T23:11:03Z
dc.date.created2022-01-25T21:35:16Z
dc.date.issued2021
dc.identifier2197499
dc.identifierhttps://hdl.handle.net/20.500.13067/1586
dc.identifierInternational Journal of Quantum Information
dc.identifierhttps://doi.org/10.1142/S0219749921410045
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6472882
dc.description.abstractThe goal of this paper is the presentation of the elementary procedures that normally are done in nonrelativistic Quantum Mechanics in terms of the principles of Machine Learning. In essence, this paper discusses Mitchell's criteria, whose block fundamental dictates that the universal evolution of any system is composed by three fundamental steps: (i) Task, (ii) Performance and (iii) Experience. In this paper, the quantum mechanics formalism reflected on the usage of evolution operator and Green's function are assumed to be part of mechanisms that are inherently engaged to the Machine Learning philosophy. The action for measuring observables through experiments and the intrinsic apparition of statistical or systematic errors are discussed in terms of "quantum learning". © 2021 World Scientific Publishing Company.
dc.languagespa
dc.publisherWorld Scientific
dc.publisherPE
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108575681&doi=10.1142%2fS0219749921410045&partnerID=40&md5=ad8550ea02b8341f3f1f8d8f23089616
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceAUTONOMA
dc.source19
dc.source4
dc.subjectDirac brackets
dc.subjectMachine learning
dc.subjectQuantum mechanics
dc.subjectTom Mitchell
dc.titleTheory of machine learning based on nonrelativistic quantum mechanics
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución