| dc.contributor | Palacios Baldeón, Joe Albino | |
| dc.creator | Gutiérrez Alva, Julio Josué | |
| dc.creator | Gutiérrez Alva, Julio Josué | |
| dc.date | 2023-05-04T18:49:01Z | |
| dc.date | 2023-05-04T18:49:01Z | |
| dc.date | 2018 | |
| dc.date.accessioned | 2023-05-23T15:00:38Z | |
| dc.date.available | 2023-05-23T15:00:38Z | |
| dc.identifier | http://hdl.handle.net/20.500.14076/24521 | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6392785 | |
| dc.description | La K-teoría bivariante kkalg en la categoría Ica de algebras localmente convexas asigna grupos abelianos kknalg(A, B), n ∈ Z, a cada par de dichas álgebras A y B y existen aplicaciones bilineales
kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C)
para A, B y C álgebras localmente convexas y m, n ∈ Z. Con este producto, podemos definir una categoría KKalg cuyos objetos son álgebras localmente convexas y cuyos morfismos están dados por los grupos graduados kk∗alg(A, B). De este modo, la K-teoría bivariante kkalg se puede ver como un funtor kkalg : lca → KKalg. Este funtor es universal con respecto a funtores split exactos, invariantes por diffotopías y K-estables. En particular, un isomorfismo en KKalg induce un isomorfismo en KKLp y en homología cíclica periódica bivariante HP.
En [10], se determina que los invariantes del ´algebra de Weyl
A1(C) = C⟨x, y|xy − yx = 1⟩
son los mismos que los de C. Esto es, se prueba que A1(C) es isomorfo a C en la categoría KKalg. En este trabajo, generalizamos el resultado a una familia de ´algebras de Weyl generalizadas.
Como resultados del presente trabajo, calculamos la clase de isomorfismo en la categoría KKalg de todas las álgebras de Weyl generalizadas no conmutativas A = C[h](σ, P ), donde σ(h) = qh + ho es un automorfismo de C[h] y P ∈ C[h], excepto cuando q ̸= 1 es una raíz de la unidad. | |
| dc.description | The bivariant K-theory kkalg in the category lca of locally convex algebras asigns abelian groups kknalg (A, B), n ∈ Z to a pair A, B of such algebras and there are bilinear maps
kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C)
for every A, B and C locally convex algebras and m, n ∈ Z. Using this product, we can define a category kkalg whose objects are locally convex algebras and whose morphisms are given by the graded groups kk∗alg(A, B). Then the bivariant K-theory kkalg can be seen as a functor kkalg : lca → kkalg. This functor is universal among split exact, diffotopy invariant and K-stable functors. In particular, an isomorphism in kkalg induces an isomorphism in KKLp and in bivariant periodic cyclic homology HP In [10], the invariants of the Weyl algebra A1(C) = C⟨x, y|xy − yx = 1⟩
are determined to be the same as those of C. That is, A1(C) is isomorphic to C in the category kkalg. In the present work, we generalize this result to a family of generalized Weyl algebras.
As results, we compute the isomorphism class in the category kkalg of all non-commutative generalized Weyl algebras A = C[h](σ, P ), where σ(h) = qh + ho is an automorphism of C[h] and P ∈ C[h], except when q ̸= 1 is a root of unity. | |
| dc.description | Tesis | |
| dc.format | application/pdf | |
| dc.language | eng | |
| dc.publisher | Universidad Nacional de Ingeniería | |
| dc.publisher | PE | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Universidad Nacional de Ingeniería | |
| dc.source | Repositorio Institucional - UNI | |
| dc.subject | Algebra de Weyl | |
| dc.subject | Mátemática aplicada | |
| dc.subject | http://purl.org/pe-repo/ocde/ford#1.01.02 | |
| dc.title | Bivariant K-Theory of generalized Weyl algebras | |
| dc.type | info:eu-repo/semantics/doctoralThesis | |