dc.contributorDAVID HILARIO COVARRUBIAS ROSALES
dc.contributorJOSE MARTIN LUNA RIVERA
dc.creatorJOSE GUADALUPE ARCEO OLAGUE
dc.date2006
dc.date.accessioned2023-03-16T14:29:29Z
dc.date.available2023-03-16T14:29:29Z
dc.identifierhttp://cicese.repositorioinstitucional.mx/jspui/handle/1007/1692
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6229680
dc.description"In this paper, we address the problem of closely spaced source localization using sensor array processing. In particular, the performance efficiency (measured in terms of the root mean square error) of the unconditional maximum likelihood (UML) algorithm for estimating the direction of arrival (DOA) of near-field sources is evaluated. Four parameters are considered in this evaluation: angular separation among sources, signal-to-noise ratio (SNR), number of snapshots, and number of sources (multiple sources). Simulations are conducted to illustrate the UML performance to compute the DOA of sources in the near-field. Finally, results are also presented that compare the performance of the UML DOA estimator with the existing multiple signal classification approach. The results show the capability of the UML estimator for estimating the DOA when the angular separation is taken into account as a critical parameter. These results are consistent in both low SNR and multiple-source scenarios."
dc.formatapplication/pdf
dc.languageeng
dc.publisherElectronics and Telecommunications Research Institute (ETRI)
dc.relationinfo:eu-repo/semantics/altIdentifier/DOI/dx.doi.org/10.4218/etrij.06.0106.0006
dc.relationcitation:Arceo Olague,J.,Covarrubias Rosales,D.,Luna Rivera,J.2006.Efficiency Evaluation of the Unconditional Maximum Likelihood Estimator for Near-Field DOA Estimation.ETRI Journal,28(6),761-769.doi:10.4218/etrij.06.0106.0006
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceETRI Journal, Vol. 28, No. 6, Págs. 761-769
dc.subjectinfo:eu-repo/classification/Autor/Near-field source localization, DOA, UML estimator, Sensor array
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2203
dc.subjectinfo:eu-repo/classification/cti/2203
dc.titleEfficiency evaluation of the unconditional maximum likelihood estimator for near-field source DOA estimation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución