dc.creatorGraesser, Jordan
dc.creatorStanimirova, Radost
dc.creatorTarrio, Katelyn
dc.creatorCopati, Esteban J.
dc.creatorVolante, Jose Norberto
dc.creatorVeron, Santiago Ramón
dc.creatorBanchero, Santiago
dc.creatorElena, Hernan Javier
dc.creatorDe Abelleyra, Diego
dc.creatorFriedl, Mark A.
dc.date.accessioned2022-09-07T13:30:46Z
dc.date.accessioned2023-03-15T14:17:29Z
dc.date.available2022-09-07T13:30:46Z
dc.date.available2023-03-15T14:17:29Z
dc.date.created2022-09-07T13:30:46Z
dc.date.issued2022-08
dc.identifier2072-4292
dc.identifierhttps://doi.org/10.3390/rs14164005
dc.identifierhttp://hdl.handle.net/20.500.12123/12812
dc.identifierhttps://www.mdpi.com/2072-4292/14/16/4005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6215771
dc.description.abstractThe impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.
dc.languageeng
dc.publisherMDPI
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRemote Sensing 14 (16) : 4005. (August 2022)
dc.subjectCobertura de Suelos
dc.subjectAlteración de la Cubierta Vegetal
dc.subjectTeledetección
dc.subjectImágenes por Satélites
dc.subjectAmérica del Sur
dc.subjectLand Cover
dc.subjectLand Cover Change
dc.subjectLandsat
dc.subjectRemote Sensing
dc.subjectSatellite Imagery
dc.subjectSouth America
dc.titleTemporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución