dc.creatorTrujillo-Jiménez, Magda Alexandra
dc.creatorLiberoff, Ana Laura
dc.creatorPessacg, Natalia
dc.creatorPacheco, Cristian
dc.creatorDiaz, Lucas Damian
dc.creatorFlaherty, Silvia
dc.date.accessioned2022-03-03T16:33:13Z
dc.date.accessioned2023-03-15T14:13:36Z
dc.date.available2022-03-03T16:33:13Z
dc.date.available2023-03-15T14:13:36Z
dc.date.created2022-03-03T16:33:13Z
dc.date.issued2022-02
dc.identifier2352-9385
dc.identifierhttps://doi.org/10.1016/j.rsase.2022.100703
dc.identifierhttp://hdl.handle.net/20.500.12123/11307
dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S2352938522000118
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6214316
dc.description.abstractIn this article we describe a new model, SatRed, which classifies land use and land cover (LULC) from Sentinel-2 imagery and data acquired in the field. SatRed performs pixel-level classification and is based on a densely-connected neural network. The study site is the lower Chubut river valley which has an extension of 225 km2 and is located in estern semiarid Patagonia. SatRed showed a 0.909 ± 0.009% (mean ± sd, n = 7) overall accuracy and outperformed the seven most traditional Machine Learning methods, including Random Forest. Our model accurately predicted buildings, shrublands, pastures and water and yielded the best results with classes harder to classify by all methods considered (Fruit crops and Horticulture). Further improvements involving textural information and multi-temporal images are proposed. Our model proved to be easy to run and use, fast to execute and flexible. We highlight the capacity of SatRed to classify LULC in small study areas as compared to large data sets usually needed for state-of-the-art Deep Learning models suggested in literature.
dc.languageeng
dc.publisherElsevier
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceRemote Sensing Applications: Society and Environment : 100703 (Available online 26 February 2022)
dc.subjectUtilización de la Tierra
dc.subjectCobertura de Suelos
dc.subjectImágenes por Satélites
dc.subjectRedes de Neuronas
dc.subjectAprendizaje Electrónico
dc.subjectLand Use
dc.subjectLand Cover
dc.subjectSatellite Imagery
dc.subjectNeural Networks
dc.subjectMachine Learning
dc.titleSatRed: New classification land use/land cover model based on multi-spectral satellite images and neural networks applied to a semiarid valley of Patagonia
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución