dc.creatorLiebrenz, Karen Ivana
dc.creatorGomez, Maria Cristina
dc.creatorBrambilla, Silvina Maricel
dc.creatorFrare, Romina Alejandra
dc.creatorStritzler, Margarita
dc.creatorMaguire, Vanina
dc.creatorRuiz, Oscar
dc.creatorSoldini, Diego Omar
dc.creatorPascuan, Cecilia Gabriela
dc.creatorSoto, Gabriela Cynthia
dc.creatorAyub, Nicolás Daniel
dc.date.accessioned2021-12-09T14:26:42Z
dc.date.accessioned2023-03-15T14:12:31Z
dc.date.available2021-12-09T14:26:42Z
dc.date.available2023-03-15T14:12:31Z
dc.date.created2021-12-09T14:26:42Z
dc.date.issued2021-11
dc.identifier0095-3628
dc.identifier1432-184X
dc.identifierhttps://doi.org/10.1007/s00248-021-01925-2
dc.identifierhttp://hdl.handle.net/20.500.12123/10872
dc.identifierhttps://link.springer.com/article/10.1007/s00248-021-01925-2
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6213834
dc.description.abstractSoybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repograntAgreement/INTA/2019-PE-E6-I115-001/2019-PE-E6-I115-001/AR./Edición génica, transgénesis y mutagénesis como generadores de nueva variabilidad en especies de interés agropecuario
dc.relationinfo:eu-repograntAgreement/INTA/2019-PD-E6-I116-001/2019-PD-E6-I116-001/AR./Identificación y análisis funcional de genes o redes génicas de interés biotecnológico con fin agropecuario, forestal, agroalimentario y/o agroindustrial.
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceMicrobial Ecology (Published: 15 November 2021)
dc.subjectSoja
dc.subjectBradyrhizobium japonicum
dc.subjectEstrés Oxidativo
dc.subjectGenomas
dc.subjectSecuencia Nucleotídica
dc.subjectSoybeans
dc.subjectOxidative Stress
dc.subjectGenomes
dc.subjectNucleotide Sequence
dc.titleWhole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución