dc.creatorHaro Juarez, Ricardo Javier
dc.creatorDardanelli, Julio Luis
dc.creatorOtegui, María Elena
dc.creatorCollino, Daniel
dc.date.accessioned2020-07-06T17:43:47Z
dc.date.accessioned2023-03-15T14:04:03Z
dc.date.available2020-07-06T17:43:47Z
dc.date.available2023-03-15T14:04:03Z
dc.date.created2020-07-06T17:43:47Z
dc.date.issued2008-06-10
dc.identifier0378-4290
dc.identifier1872-6852
dc.identifierhttps://doi.org/10.1016/j.fcr.2008.06.006
dc.identifierhttp://hdl.handle.net/20.500.12123/7522
dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S0378429008001251
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6210209
dc.description.abstractPeanut (Arachis hypogaea L.) production in Argentina is affected by frequent and unpredictable periods of water deficit that usually overlap the critical period for pod set of early sown crops. An indirect effect of water deficit is reduced pegging due to increased soil strength promoted by surface soil desiccation. There is no knowledge on the associated effects determined by peg production dynamics and variable plant water status. We evaluated the responses of these traits by means of field experiments (Exp1: 2002–2003; Exp2: 2005–2006) that included two peanut cultivars (ASEM 485 INTA and Florman INTA) croppedat different sowing dates and water regimes (IRR: irrigated; WS: water stress). Treatments allowed exploring a range of: (i) evaporative demands, (ii) surface soil strength levels, and (iii) soil water contents (u). We computed leaf area index (LAI), intercepted photosynthetically active radiation (IPAR), surface soil strength, degree of leaf folding, degree days of stress (SDD), crop (CGR) and pod growth rates (PGR) at critical periods, and radiation use efficiency (RUE). Seed yield and seed yield components (pod number per m2, seed number per m2 and individual seed weight) were determined at final harvest. WS promoted a significant decline (average of 73%) in seed yield (P 0.022), which was better explained (r2 = 0.98) by the decline in seed and pod numbers than by the decline in individual seed weight (r2 = 0.67). Seed number responded chiefly to CGR between R3 and R6.5, but WS plots of Exp1 departed from the general model fitted to IRR plots (40–53% decrease respect to predicted values). Biomass partitioning to reproductive sinks was also affected in WS plots. Enhanced soil strength promoted by soil drying reduced normal pegging pattern, and a generic bilinear model indicated a soil strength threshold of ca. 2.23 0.10 MPa (u = 0.119 cm3 cm3) above which peg penetration decreased dramatically (r2 = 0.57, P < 0.001). WS reduced IPAR accumulation (10–30% reduction) and biomass production (34–67% reduction).The former was affected only by direct WS effects (i.e., tissue expansion, leaf movements). The latter was affected additionally by indirect effects (i.e., those determined by reproductive sink activity). The larger response of biomass production than of cumulative IPAR to WS determined a significant (P < 0.05) decline in RUE with increased water deficit.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repograntAgreement/INTA/PNIND/1108064/AR./Bases ecofisiológicas del mejoramiento y sistemas de cultivo.
dc.relationinfo:eu-repograntAgreement/INTA/PNIND/1108062/AR./Introduccion de variabilidad y mejora genética continua de los cultivos industriales.
dc.relationinfo:eu-repograntAgreement/INTA/CORDO/1262205/AR./Proyecto regional del territorio agrícola ganadero central de la provincia de Córdoba.
dc.relationinfo:eu-repograntAgreement/INTA/REDEV/1132021/AR./Bases ecofisiológicas para una producción agrícola sustentable
dc.relationinfo:eu-repograntAgreement/INTA/PNIND/1108073/AR./Manejo integrado de los cultivos industriales.
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceField Crops Research 109 (1–3) : 24-33 (October–December 2008)
dc.subjectArachis hypogaea
dc.subjectAgua
dc.subjectRadiación
dc.subjectWater
dc.subjectRadiation
dc.subjectSoil
dc.subjectSuelo
dc.titleSeed yield determination of peanut crops under water deficit: Soil strength effects on pod set, the source–sink ratio and radiation use efficiency
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución