dc.creatorBustamante, Claudia Anabel
dc.creatorBrotman, Yavid
dc.creatorMonti, Laura L.
dc.creatorGabilondo, Julieta
dc.creatorBudde, Claudio Olaf
dc.creatorLara, María Valeria
dc.creatorFernie, Alisdair R.
dc.creatorDrincovich, María Fabiana
dc.date.accessioned2018-06-12T15:31:06Z
dc.date.accessioned2023-03-15T13:54:39Z
dc.date.available2018-06-12T15:31:06Z
dc.date.available2023-03-15T13:54:39Z
dc.date.created2018-06-12T15:31:06Z
dc.date.issued2018
dc.identifier1399-3054
dc.identifier0031-9317
dc.identifierhttps://doi.org/10.1111/ppl.12665
dc.identifierhttps://onlinelibrary.wiley.com/doi/abs/10.1111/ppl.12665
dc.identifierhttp://hdl.handle.net/20.500.12123/2604
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6205865
dc.description.abstractPeaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid chromatography coupled to mass spectrometry (LC–MS), 59 lipid species were detected, including diacyl- and triacylglycerides. The decreases in fruit firmness during postharvest ripening were accompanied by changes in the relative amount of several plastidic glycerolipid and triacylglyceride species, which may indicate their use as fuels prior to fruit senescence. In addition, levels of galactolipids were also modified in fruits stored at 0∘C for short and long periods, reflecting the stabilization of plastidic membranes at low temperature. When comparing susceptible and resistant varieties, the relative abundance of certain species of the lipid classes phosphatidylethanolamine, phosphatidylcholine and digalactosyldiacylglycerol correlated with the tolerance to CI, reflecting the importance of the plasma membrane in the development of CI symptoms and allowing the identification of possible lipid markers for chilling resistance. Finally, transcriptional analysis of genes involved in galactolipid metabolism revealed candidate genes responsible for the observed changes after cold exposure. When taken together, our results highlight the importance of plastids in the postharvest physiology of fruits and provide evidence that lipid composition and metabolism have a profound influence on the cold response.
dc.languageeng
dc.relationinfo:eu-repograntAgreement/INTA/PNFRU/1105083/AR./Nuevas tecnologías para el mantenimiento de la calidad en la cosecha, acondicionamiento y logística de frutas frescas.
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcePhysiologia plantarum, vol. 163. 2018. p. 2-17
dc.subjectDurazno
dc.subjectPrunus persica
dc.subjectAlmacenamiento en Frío
dc.subjectFisiologia Postcosecha
dc.subjectMetabolismo de Lípidos
dc.subjectDaño por Frío
dc.subjectVariedades
dc.subjectMaduración en Postcosecha
dc.subjectPeaches
dc.subjectCold Storage
dc.subjectPostharvest Physiology
dc.subjectLipid Metabolism
dc.subjectChilling Injury
dc.subjectVarieties
dc.subjectPostharvest Ripening
dc.titleDifferential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución