dc.creatorFerreira L.A.
dc.creatorCosta Ribeiro C.H.
dc.creatorDa Costa Bianchi R.A.
dc.date.accessioned2019-08-19T23:45:22Z
dc.date.accessioned2022-09-09T15:39:16Z
dc.date.accessioned2023-03-13T21:10:08Z
dc.date.available2019-08-19T23:45:22Z
dc.date.available2022-09-09T15:39:16Z
dc.date.available2023-03-13T21:10:08Z
dc.date.created2019-08-19T23:45:22Z
dc.date.created2022-09-09T15:39:16Z
dc.date.issued2014
dc.identifierFERREIRA, LEONARDO ANJOLETTO; COSTA RIBEIRO, CARLOS HENRIQUE; DA COSTA BIANCHI, REINALDO AUGUSTO. Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems. Applied Intelligence (Boston), v. 1, p. 1-12, 2014.
dc.identifier0924-669X
dc.identifierhttp://148.201.128.228:8080/xmlui/handle/20.500.12032/6385
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6179923
dc.description.abstractThis article presents two new algorithms for finding the optimal solution of a Multi-agent Multi-objective Reinforcement Learning problem. Both algorithms make use of the concepts of modularization and acceleration by a heuristic function applied in standard Reinforcement Learning algorithms to simplify and speed up the learning process of an agent that learns in a multi-agent multi-objective environment. In order to verify performance of the proposed algorithms, we considered a predator-prey environment in which the learning agent plays the role of prey that must escape the pursuing predator while reaching for food in a fixed location. The results show that combining modularization and acceleration using a heuristics function indeed produced simplification and speeding up of the learning process in a complex problem when comparing with algorithms that do not make use of acceleration or modularization techniques, such as Q-Learning and Minimax-Q. © 2014 Springer Science+Business Media New York.
dc.relationApplied Intelligence
dc.rightsAcesso Restrito
dc.titleHeuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
dc.typeArtigo


Este ítem pertenece a la siguiente institución