dc.creatorGuier Acosta, Jorge Ignacio
dc.date.accessioned2022-10-24T19:21:57Z
dc.date.accessioned2023-03-13T12:40:43Z
dc.date.available2022-10-24T19:21:57Z
dc.date.available2023-03-13T12:40:43Z
dc.date.created2022-10-24T19:21:57Z
dc.date.issued2022-10-09
dc.identifierhttps://hdl.handle.net/10669/87524
dc.identifier821-B9-128
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6118578
dc.description.abstractLet T* be the theory of lattice-ordered subrings, without minimal (non zero) idempontents, convex in von Neumann regular real closed rings that are divisible-proyectable and sc-regular. In this paper, a local divisibility binary relation is introduced in order to prove the elimination of quantifiers of the theory T* in the language of lattice-ordered rings adding the divisibility relation, the radical relation associated to the minimal prime spectrum and this new local divisibility relation.
dc.languageeng
dc.subjectReal closed rings
dc.subjectModel theory
dc.subjectElimination of quantifiers
dc.subjectprojectable f-rings
dc.titleElimination of quantifiers of a theory of real closed rings.
dc.typeartículo preliminar


Este ítem pertenece a la siguiente institución