dc.creatorTorres Guardia, Luis Ernesto
dc.creatorAlvez Lima, Gilson
dc.date2017-09-25T21:45:29Z
dc.date2017-09-25T21:45:29Z
dc.date2010
dc.date.accessioned2023-03-09T06:59:06Z
dc.date.available2023-03-09T06:59:06Z
dc.identifierhttp://revistas.pucp.edu.pe/index.php/promathematica/article/view/10284/10729
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6023324
dc.descriptionEl artículo no presenta resumen
dc.descriptionThis article studies the linear multicommodity network flow problem. This kind of problem arises in a wide variety of contexts. A numerical implementation of the primal-dual interior-point method is designed to solve the problem. In the interior-point method, at each iteration, the corresponding linear system, expressed as a normal equations system, is solved by using the AINV algorithm combined with a preconditioned conjugate gradient algorithm or by the AINV algorithm for the whole normal equations. Numerical experiments are conducted for networks of different dimensions and numbers of products for the distribution problem. The computational results show the effectiveness of the interior-point method for this class of network problems.
dc.formatapplication/pdf
dc.languagespa
dc.publisherPontificia Universidad Católica del Perú
dc.publisherPE
dc.relationurn:issn:2305-2430
dc.relationurn:issn:1012-3938
dc.rightsAttribution 4.0 International
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by/4.0
dc.sourcePro Mathematica; Vol. 24, Núm. 47-48 (2010)
dc.subjectLinear Programming
dc.subjectInterior-Point Methods
dc.subjectNetwork Optimization
dc.subjectMulticommodity Flows
dc.subjecthttps://purl.org/pe-repo/ocde/ford#1.01.00
dc.titleInterior point methods for multicommodity network flows
dc.typeinfo:eu-repo/semantics/article
dc.typeArtículo


Este ítem pertenece a la siguiente institución