dc.creatorJuárez, Omar
dc.creatorLachira, Martín
dc.date2020-12-16T02:17:52Z
dc.date2020-12-16T02:17:52Z
dc.date2020
dc.date.accessioned2023-03-09T00:19:54Z
dc.date.available2023-03-09T00:19:54Z
dc.identifierhttp://repositorio.pucp.edu.pe/index/handle/123456789/173522
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5993070
dc.descriptionLet M be a compact domain in R3. The Hodge Decomposition Theorem yields a decomposition of the space of vector elds on M into ve mutually orthogonal subspaces that encode geometric and topological features of M. This decomposition is useful in many branches of mathematics, physics, and engineering. In this paper, we study the general version of this theorem, valid for di erential forms on smooth, compact, oriented manifolds with boundary, in any dimension, and deduce from it the particular ve-term decomposition for compact domains in 3-space. We do this by using basic notions from multivariable calculus, linear algebra, di erential forms, and algebraic topology, following the article [CDTG], by Cantarella, DeTurck and Gluck, and the book of Schwarz [S]. Furthermore, we present some applications of the notions developed in this paper to the formulation of Maxwell's equations and to the graphical representations of di erential forms in Rn.
dc.formatapplication/pdf
dc.languageeng
dc.publisherPE
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Perú
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.subjectHodge decomposition
dc.subjectHodge theory
dc.subjectdi erential forms
dc.subjectsmooth manifolds
dc.subjectMaxwell equations
dc.subjecthttp://purl.org/pe-repo/ocde/ford#5.09.01
dc.titleHodge Theory and Electromagnetism
dc.typeinfo:eu-repo/semantics/workingPaper
dc.typeDocumento de trabajo


Este ítem pertenece a la siguiente institución