On the temporal discretizations of convection dominated convection-diusion equations in time-dependent domain

dc.creatorSrivstava, Shweta
dc.creatorGanesan, Sashikumaar
dc.date2018-09-10
dc.date.accessioned2023-03-08T19:13:18Z
dc.date.available2023-03-08T19:13:18Z
dc.identifierhttps://revistas.pucp.edu.pe/index.php/promathematica/article/view/20245
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5964415
dc.descriptionThis paper presents the numerical analysis of a convection dominated scalar equation with dierent time discretizations in time-dependent domains. The implicit Euler, Crank-Nicolson and backward-dierence methods are used for the temporal discretization. The time-dependent domain is handled by the arbitrary Lagrangian-Eulerian (ALE) approach. In particular, the non-conservative form of the ALE scheme is considered. The Streamline Upwind Petrov-Galerkin (SUPG) nite element method is used for spatial discretization. It is shown that the stability of the fully discrete solution, irrespective of the temporal discretization, is only conditionally stable. The dependence of the numerical solution on the stabilization parameter k is also studied. It is seen that the Crank-Nicolson scheme is less dissipative than the implicit Euler and the backward dierence method. Moreover, the backward dierence scheme is more sensitive to the stabilization parameter k than the other time discretizations.en-US
dc.descriptionEl presente artículo desarrolla el análisis numérico de una ecuación escalar con convección dominada y distintas discretizaciones temporales en dominios dependientes del tiempo. Para la discretización temporal se haría uso de los métodos en reversa de Euler, el de Crank-Nicolson y otros metodos de diferencias nitas en reversa. El dominio dependiente del tiempo es tratado desde un enfoque lagrangiano-euleriano arbitrario (ALE). Particularmente, consideramos la forma no conservativa del enfoque ALE. Además, empleamos el método de Petrov-Galerkin (SUPG) para discretización espacial. Se prueba que la estabilidad de la solución completamente discreta, independiente de la discretización temporal, es solo condicionalmente estable. Además, se estudia la dependencia de la solucion numerica respecto al parámetro estabilizadork. Se corrobora que el esquema Crank-Nicolson es menos disipativoque el método implícito de Euler y el método de diferencias en reversa.Más aun, el esquema de diferencias en reversa resulta más sensible alparámetro estabilizador k que otras discretizaciones temporales.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherPontificia Universidad Católica del Perúes-ES
dc.relationhttps://revistas.pucp.edu.pe/index.php/promathematica/article/view/20245/20196
dc.rightsDerechos de autor 2018 Pro Mathematicaes-ES
dc.rightshttp://creativecommons.org/licenses/by/4.0es-ES
dc.sourcePro Mathematica; Vol. 30 Núm. 59 (2018); 99-137es-ES
dc.source2305-2430
dc.source1012-3938
dc.subjectConvection-diffusion-reaction equationen-US
dc.subjectSUPG stabilizationen-US
dc.subjectGeometric conservation Law (GCL)en-US
dc.subjecttime-dependent domainen-US
dc.subjectarbitrary Lagrangian-Eulerian approachen-US
dc.subjecttemporal discretizationsen-US
dc.subjectEcuación reacción-convección-difusiónes-ES
dc.subjectestabilización SUPGes-ES
dc.subjectley de conservación geometrica (GCL)es-ES
dc.subjectdominio dependiente del tiempoes-ES
dc.subjectenfoque lagrangiano-euleriano arbitrarioes-ES
dc.subjectdiscretizaciones temporaleses-ES
dc.titleOn the temporal discretizations of convection dominated convection-diusion equations in time-dependent domainen-US
dc.titleOn the temporal discretizations of convection dominated convection-diusion equations in time-dependent domaines-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución