dc.creatorde Lucas, Javier
dc.creatorGracia, Xavier
dc.creatorRivas, Xavier (1)
dc.creatorRomán-Roy, Narciso (1)
dc.creatorVilarino, Silvia
dc.date.accessioned2023-02-02T15:47:55Z
dc.date.accessioned2023-03-07T19:40:37Z
dc.date.available2023-02-02T15:47:55Z
dc.date.available2023-03-07T19:40:37Z
dc.date.created2023-02-02T15:47:55Z
dc.identifierJavier de Lucas et al 2022 J. Phys. A: Math. Theor. 55 295204 DOI 10.1088/1751-8121/ac78ab
dc.identifier1751-8113
dc.identifierhttps://reunir.unir.net/handle/123456789/14112
dc.identifierhttps://doi.org/10.1088/1751-8121/ac78ab
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5908359
dc.description.abstractA Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, a so-called Vessiot-Guldberg Lie algebra. In this work, multisymplectic forms are applied to the study of the reduction of Lie systems through their Lie symmetries. By using a momentum map, we perform a reduction and reconstruction procedure of multisymplectic Lie systems, which allows us to solve the original problem by analysing several simpler multisymplectic Lie systems. Conversely, we study how reduced multisymplectic Lie systems allow us to retrieve the form of the multisymplectic Lie system that gave rise to them. Our results are illustrated with examples from physics, mathematics, and control theory.
dc.languageeng
dc.publisherJournal of Physics A: Mathematical and Theoretical
dc.relation;vol. 55, nº 29
dc.relationhttps://iopscience.iop.org/article/10.1088/1751-8121/ac78ab
dc.rightsopenAccess
dc.subjectLie system
dc.subjectmultisymplectic manifold
dc.subjectmultisymplectic reduction and reconstruction
dc.subjectVessiot-Guldberg Lie algebra
dc.subjectLie group
dc.subjecttime-dependent harmonic oscillator
dc.subjectenergy-momentum method
dc.subjectJCR
dc.subjectScopus
dc.titleReduction and reconstruction of multisymplectic Lie systems
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución