dc.creatorAlberich-Carramiñana, Maria
dc.creatorFerragut, Antoni (1)
dc.creatorLlibre, Jaume
dc.date.accessioned2022-05-27T12:28:14Z
dc.date.accessioned2023-03-07T19:37:20Z
dc.date.available2022-05-27T12:28:14Z
dc.date.available2023-03-07T19:37:20Z
dc.date.created2022-05-27T12:28:14Z
dc.identifier0001-8708
dc.identifierhttps://reunir.unir.net/handle/123456789/13191
dc.identifierhttps://doi.org/10.1016/j.aim.2021.107924
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5907458
dc.description.abstractIn this paper we study the action of planar birational transformations, also known as plane Cremona maps, on quadratic planar differential systems. We provide geometrical characterizations of when a quadratic system is transformed into a new quadratic system after applying a quadratic plane Cremona map. These conditions are expressed in terms of local properties of the plane Cremona map at the singular points of the system. As a consequence, we provide a new family of quadratic systems having an algebraic limit cycle of degree 5. Moreover we classify the known families of quadratic differential systems having an algebraic limit cycle by the action of quadratic plane Cremona maps. We also provide the phase portraits on the Poincaré disk of all these families.
dc.languageeng
dc.publisherAcademic Press Inc.
dc.relation;vol. 389
dc.relationhttps://www.sciencedirect.com/science/article/pii/S0001870821003637?via%3Dihub
dc.rightsopenAccess
dc.subjectalgebraic limit cycle
dc.subjectplane cremona map
dc.subjectquadratic differential system
dc.subjectScopus
dc.subjectJCR
dc.titleQuadratic planar differential systems with algebraic limit cycles via quadratic plane Cremona maps
dc.typearticle


Este ítem pertenece a la siguiente institución