dc.creatorGupta, Akansha
dc.creatorGhanshala, Kamal
dc.creatorJoshi, R. C.
dc.date.accessioned2022-04-29T08:27:49Z
dc.date.accessioned2023-03-07T19:36:37Z
dc.date.available2022-04-29T08:27:49Z
dc.date.available2023-03-07T19:36:37Z
dc.date.created2022-04-29T08:27:49Z
dc.identifier1989-1660
dc.identifierhttps://reunir.unir.net/handle/123456789/12978
dc.identifierhttps://doi.org/10.9781/ijimai.2021.03.004
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5907253
dc.description.abstractThis article offers a thorough analysis of the machine learning classifiers approaches for the collected Received Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers.
dc.languageeng
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
dc.relation;vol. 6, nº 6
dc.relationhttps://www.ijimai.org/journal/bibcite/reference/2923
dc.rightsopenAccess
dc.subjectpropagation loss
dc.subjectreceived signal strength indicator (RSSI)
dc.subjectradio
dc.subjectmachine learning
dc.subjectclassification
dc.subjectsupport vector machine
dc.subject5G
dc.subjectIJIMAI
dc.titleMachine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mapping
dc.typearticle


Este ítem pertenece a la siguiente institución