dc.creatorBacallao-Vidal, Jesús Concepción
dc.creatorMachado-Fernández, José Raúl
dc.date.accessioned2021-07-15T10:03:45Z
dc.date.accessioned2023-03-07T19:31:59Z
dc.date.available2021-07-15T10:03:45Z
dc.date.available2023-03-07T19:31:59Z
dc.date.created2021-07-15T10:03:45Z
dc.identifier1989-1660
dc.identifierhttps://reunir.unir.net/handle/123456789/11620
dc.identifierhttp://doi.org/10.9781/ijimai.2016.421
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5905934
dc.description.abstractThe main problem faced by naval radars is the elimination of the clutter input which is a distortion signal appearing mixed with target reflections. Recently, the Pareto distribution has been related to sea clutter measurements suggesting that it may provide a better fit than other traditional distributions. The authors propose a new method for estimating the Pareto shape parameter based on artificial neural networks. The solution achieves a precise estimation of the parameter, having a low computational cost, and outperforming the classic method which uses Maximum Likelihood Estimates (MLE). The presented scheme contributes to the development of the NATE detector for Pareto clutter, which uses the knowledge of clutter statistics for improving the stability of the detection, among other applications.
dc.languageeng
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
dc.relation;vol. 4, nº 2
dc.relationhttps://ijimai.org/journal/bibcite/reference/2574
dc.rightsopenAccess
dc.subjectartificial neural networks
dc.subjectestimation
dc.subjectpareto distributed clutter
dc.subjectIJIMAI
dc.titleImproved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networks
dc.typearticle


Este ítem pertenece a la siguiente institución