dc.creatorSettouti, Nesma
dc.creatorEl Amine Bechar, Mohammed
dc.creatorAmine Chikh, Mohammed
dc.date.accessioned2021-07-07T12:30:51Z
dc.date.accessioned2023-03-07T19:31:49Z
dc.date.available2021-07-07T12:30:51Z
dc.date.available2023-03-07T19:31:49Z
dc.date.created2021-07-07T12:30:51Z
dc.identifier1989-1660
dc.identifierhttps://reunir.unir.net/handle/123456789/11573
dc.identifierhttp://doi.org/10.9781/ijimai.2016.419
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5905889
dc.description.abstractThis work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.
dc.languageeng
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
dc.relation;vol. 4, nº 1
dc.relationhttps://ijimai.org/journal/bibcite/reference/2527
dc.rightsopenAccess
dc.subjectdata mining
dc.subjectclassification
dc.subjecttest
dc.subjectalgorithms
dc.subjectfriefman test
dc.subjectIJIMAI
dc.titleStatistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task
dc.typearticle


Este ítem pertenece a la siguiente institución