dc.creatorChicharro, Francisco Israel (1)
dc.creatorCordero, Alicia
dc.creatorGarrido, Neus (1)
dc.creatorTorregrosa, Juan Ramón
dc.date.accessioned2020-08-07T09:40:14Z
dc.date.accessioned2023-03-07T19:27:51Z
dc.date.available2020-08-07T09:40:14Z
dc.date.available2023-03-07T19:27:51Z
dc.date.created2020-08-07T09:40:14Z
dc.identifier0893-9659
dc.identifierhttps://reunir.unir.net/handle/123456789/10371
dc.identifierhttps://doi.org/10.1016/j.aml.2020.106277
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5904710
dc.description.abstractIterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second order. The convergence of the proposed schemes is analyzed by means of Taylor expansions. Numerical examples are shown to compare the performance of the proposed schemes with other known ones, confirming the theoretical results.
dc.languageeng
dc.publisherApplied Mathematics Letters
dc.relation;vol. 104
dc.relationhttps://www.sciencedirect.com/science/article/abs/pii/S0893965920300707?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectnonlinear systems
dc.subjectiterative methods
dc.subjectdivided difference operator
dc.subjectkurchatov divided difference
dc.subjectScopus
dc.subjectJCR
dc.titleOn the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución