dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto
dc.creatorMoreno-Mediavilla, Daniel (1)
dc.creatorOrcos, Lara (1)
dc.creatorSicilia, Juan Antonio (1)
dc.date.accessioned2020-06-17T05:44:48Z
dc.date.accessioned2023-03-07T19:27:14Z
dc.date.available2020-06-17T05:44:48Z
dc.date.available2023-03-07T19:27:14Z
dc.date.created2020-06-17T05:44:48Z
dc.identifier1572-8897
dc.identifierhttps://reunir.unir.net/handle/123456789/10187
dc.identifierhttps://doi.org/10.1007/s10910-020-01101-w
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5904526
dc.description.abstractIn this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will impose conditions, to ensure that the method converges, are weaker than in the ones imposed in previous results. The theoretical results shown in this study are applied to a chemical application in order to be proven.
dc.languageeng
dc.publisherJournal of Mathematical Chemistry
dc.relation;vol. 58, nº 3
dc.relationhttps://link.springer.com/article/10.1007/s10910-020-01101-w#citeas
dc.rightsrestrictedAccess
dc.subjectinexact Newton-like methods
dc.subjectunified convergence
dc.subjectnondifferentiable equation
dc.subjectweaker conditions
dc.subjectJCR
dc.subjectScopus
dc.titleWeaker conditions for inexact mutitpoint Newton-like methods
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución