dc.creatorMaroju, P
dc.creatorMagreñán, Á. Alberto
dc.creatorSarría, Íñigo (1)
dc.creatorKumar, Abhimanyu
dc.date.accessioned2020-06-16T08:10:41Z
dc.date.accessioned2023-03-07T19:27:13Z
dc.date.available2020-06-16T08:10:41Z
dc.date.available2023-03-07T19:27:13Z
dc.date.created2020-06-16T08:10:41Z
dc.identifier1572-8897
dc.identifierhttps://reunir.unir.net/handle/123456789/10183
dc.identifierhttps://doi.org/10.1007/s10910-019-01097-y
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5904523
dc.description.abstractThis paper deal with the study of local convergence of fourth and fifth order iterative method for solving nonlinear equations in Banach spaces. Only the premise that the first order Frechet derivative fulfills the Lipschitz continuity condition is needed.Under these conditions, a convergence theorem is established to study the existence and uniqueness regions for the solution for each method. The efficacy of our convergence study is shown solving various numerical examples as a nonlinear integral equation and calculating the radius of the convergence balls. We compare the radii of convergence balls and observe that by our approach, we get much larger balls as existing ones. In addition, we also include the real and complex dynamic study of one of the methods applied to a generic polynomial of order two.
dc.languageeng
dc.publisherJournal of Mathematical Chemistry
dc.relation;vol. 58, nº 3
dc.relationhttps://link.springer.com/article/10.1007%2Fs10910-019-01097-y
dc.rightsrestrictedAccess
dc.subjectlocal convergence
dc.subjectBanach spaces
dc.subjectdynamic
dc.subjecthammerstein type integral equation
dc.subjectFrechet derivative
dc.subjectparameter spaces
dc.subjectnumerical examples
dc.subjectJCR
dc.subjectScopus
dc.titleLocal convergence of fourth and fifth order parametric family of iterative methods in Banach spaces
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución