dc.creatorLeón, Rafael
dc.creatorRainer, J. Javier
dc.creatorRojo, José Manuel
dc.creatorGalán, Ramón
dc.date.accessioned2019-12-03T09:57:24Z
dc.date.accessioned2023-03-07T19:25:23Z
dc.date.available2019-12-03T09:57:24Z
dc.date.available2023-03-07T19:25:23Z
dc.date.created2019-12-03T09:57:24Z
dc.identifier1989-1660
dc.identifierhttps://reunir.unir.net/handle/123456789/9603
dc.identifierhttp://dx.doi.org/10.9781/ijimai.2012.162
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5903974
dc.description.abstractWe perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.
dc.languagespa
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
dc.relation;vol. 01, nº 06
dc.relationhttps://www.ijimai.org/journal/node/273
dc.rightsopenAccess
dc.subjectweb mining
dc.subjectsupervised learning
dc.subjectbootstrap
dc.subjectpatterns mining
dc.subjectweb classifiers
dc.subjectknowledge management
dc.subjectIJIMAI
dc.titleImproving Web Learning through model Optimization using Bootstrap for a Tour-Guide Robot
dc.typearticle


Este ítem pertenece a la siguiente institución