dc.creatorVishwa, Abhinav
dc.creatorLal, Mohit K.
dc.creatorDixit, Sharad
dc.creatorVardwaj, Dr. Pritish
dc.date.accessioned2019-11-13T12:45:43Z
dc.date.accessioned2023-03-07T19:25:13Z
dc.date.available2019-11-13T12:45:43Z
dc.date.available2023-03-07T19:25:13Z
dc.date.created2019-11-13T12:45:43Z
dc.identifier1989-1660
dc.identifierhttps://reunir.unir.net/handle/123456789/9543
dc.identifierhttp://dx.doi.org/10.9781/ijimai.2011.1411
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5903921
dc.description.abstractIn this paper we proposed a automated Artificial Neural Network (ANN) based classification system for cardiac arrhythmia using multi-channel ECG recordings. In this study, we are mainly interested in producing high confident arrhythmia classification results to be applicable in diagnostic decision support systems. Neural network model with back propagation algorithm is used to classify arrhythmia cases into normal and abnormal classes. Networks models are trained and tested for MIT-BIH arrhythmia. The differen structures of ANN have been trained by mixture of arrhythmic and non arrhythmic data patient. The classification performance is evaluated using measures; sensitivity, specificity, classification accuracy, mean squared error (MSE), receiver operating characteristics (ROC) and area under curve (AUC). Our experimental results gives 96.77% accuracy on MIT-BIH database and 96.21% on database prepared by including NSR database also.
dc.languageeng
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
dc.relation;vol. 01, nº 04
dc.relationhttps://www.ijimai.org/journal/node/190
dc.rightsopenAccess
dc.subjectECG arrhythmia
dc.subjectsensitivity
dc.subjectspecificity
dc.subjectaccuracy
dc.subjectarrhythmia classification
dc.subjectartificial neural networks
dc.subjectIJIMAI
dc.titleClasification Of Arrhythmic ECG Data Using Machine Learning Techniques
dc.typearticle


Este ítem pertenece a la siguiente institución