dc.creatorArgyros, Ioannis K
dc.creatorSheth, Soham M.
dc.creatorYounis, Rami M.
dc.creatorMagreñán, Á. Alberto (1)
dc.creatorGeorge, Santhosh
dc.date.accessioned2019-08-20T07:33:11Z
dc.date.accessioned2023-03-07T19:23:32Z
dc.date.available2019-08-20T07:33:11Z
dc.date.available2023-03-07T19:23:32Z
dc.date.created2019-08-20T07:33:11Z
dc.identifier2199-5796
dc.identifierhttps://reunir.unir.net/handle/123456789/8966
dc.identifierDOI https://doi.org/10.1007/s40819-017-0398-1
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5903408
dc.description.abstractThe mesh independence principle states that, if Newton’s method is used to solve an equation on Banach spaces as well as finite dimensional discretizations of that equation, then the behaviour of the discretized process is essentially the same as that of the initial method. This principle was inagurated in Allgower et al. (SIAM J Numer Anal 23(1):160–169, 1986). Using our new Newton–Kantorovich-like theorem and under the same information we show how to extend the applicability of this principle in cases not possible before. The results can be used to provide more efficient programming methods.
dc.languageeng
dc.publisherInternational Journal of Applied and Computational Mathematics
dc.relations;vol. 3, suple. 1
dc.relationhttps://link.springer.com/article/10.1007%2Fs40819-017-0398-1#citeas
dc.rightsrestrictedAccess
dc.subjectNewton’s method
dc.subjectBanach space
dc.subjectOperator equation
dc.subjectmesh independence
dc.subjectScopus
dc.titleExtending the mesh independence for solving nonlinear equations using restricted domains
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución