dc.creatorSalmerón, José L (1)
dc.creatorPalos-Sánchez, Pedro R
dc.date.accessioned2018-03-07T16:19:57Z
dc.date.accessioned2023-03-07T19:16:09Z
dc.date.available2018-03-07T16:19:57Z
dc.date.available2023-03-07T19:16:09Z
dc.date.created2018-03-07T16:19:57Z
dc.identifier2168-2275
dc.identifierhttps://reunir.unir.net/handle/123456789/6326
dc.identifierhttps://doi.org/10.1109/TCYB.2017.2771387
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5901052
dc.description.abstractThis paper is focused on an innovative fuzzy cognitive maps extension called fuzzy grey cognitive maps (FGCMs). FGCMs are a mixture of fuzzy cognitive maps and grey systems theory. These have become a useful framework for facing problems with high uncertainty, under discrete small and incomplete datasets. This paper deals with the problem of uncertainty propagation in FGCM dynamics with Hebbian learning. In addition, this paper applies differential Hebbian learning (DHL) and balanced DHL to FGCMs for the first time. We analyze the uncertainty propagation in eight different scenarios in a classical chemical control problem. The results give insight into the propagation of the uncertainty or greyness in the iterations of the FGCMs. The results show that the nonlinear Hebbian learning is the choice with less uncertainty in steady final grey states for Hebbian learning algorithms.
dc.languageeng
dc.publisherIEEE Transactions on Cybernetics
dc.relation;nº 99
dc.relationhttp://ieeexplore.ieee.org/document/8115260/
dc.rightsrestrictedAccess
dc.subjectuncertainty
dc.subjectheuristic algorithms
dc.subjecthebbian theory
dc.subjectproposals
dc.subjectmachine learning algorithms
dc.subjectcybernetics
dc.subjectScopus
dc.subjectJCR
dc.titleUncertainty Propagation in Fuzzy Grey Cognitive Maps With Hebbian-Like Learning Algorithms
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución