dc.creatorMeza, Joaquín
dc.creatorEspitia, Helbert
dc.creatorMontenegro, Carlos Enrique
dc.creatorGonzález-Crespo, Rubén (1)
dc.date.accessioned2017-10-26T14:51:36Z
dc.date.accessioned2023-03-07T19:14:44Z
dc.date.available2017-10-26T14:51:36Z
dc.date.available2023-03-07T19:14:44Z
dc.date.created2017-10-26T14:51:36Z
dc.identifier1433-7479
dc.identifierhttps://reunir.unir.net/handle/123456789/5846
dc.identifierhttp://dx.doi.org/10.1007/s00500-015-1972-2
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900590
dc.description.abstractIn this paper, a strategy for multi-objective optimization based upon the behavior of a particle swarm with rotational and linear motion is presented. The strategy for multi-objective optimization is based upon the emulation of the linear and circular movements of a swarm (flock). Thus emerges the physical basis for the cognitive model, which in conjunction with exploration-exploitation results in the proposal of a cognitive algorithm, which is tested through several multi-objective optimization functions. The algorithm proposed is compared with standard particle swarm optimization multi-objective via statistical analysis.
dc.languageeng
dc.publisherSoft Computing
dc.relationnúmero especial;vol. 20, nº 9
dc.relationhttps://link.springer.com/article/10.1007%2Fs00500-015-1972-2
dc.rightsrestrictedAccess
dc.subjectmulti-objective optimization
dc.subjectparticle swarm
dc.subjectvorticity
dc.subjectJCR
dc.subjectScopus
dc.titleStatistical analysis of a multi-objective optimization algorithm based on a model of particles with vorticity behavior
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución