dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto (1)
dc.date.accessioned2017-10-08T08:10:33Z
dc.date.accessioned2023-03-07T19:14:20Z
dc.date.available2017-10-08T08:10:33Z
dc.date.available2023-03-07T19:14:20Z
dc.date.created2017-10-08T08:10:33Z
dc.identifier1873-5649
dc.identifierhttps://reunir.unir.net/handle/123456789/5685
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2015.05.127
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900453
dc.description.abstractWe present a unified convergence analysis of Inexact Newton like methods in order to approximate a locally unique solution of a nonlinear operator equation containing a nondifferentiable term in a Banach space setting. The convergence conditions are more general and the error analysis more precise than in earlier studies such as (Argyros, 2007: Catinas, 2005; Catinas, 1994; Chen and Yamamoto, 1989: Dennis, 1968: Hernandez and Romero, 2005; Potra and Ptak, 1984; Rheinboldt, 1977). Special cases of our results can be used to find zeros of derivatives. Numerical examples are also provided in this study. (C) 2015 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherApplied Mathematics and Computation
dc.relation;vol. 265
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0096300315007584?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectInexact Newton-like methods
dc.subjectbanach space
dc.subjectlocal convergence
dc.subjectsemilocal convergence
dc.subjectdivided difference of order one
dc.subjectunivariate unconstrained optimization
dc.subjectJCR
dc.subjectScopus
dc.titleOn the convergence of inexact two-point Newton-like methods on Banach spaces
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución