dc.creatorMagreñán, Á. Alberto (1)
dc.creatorArgyros, Ioannis K
dc.date.accessioned2017-10-08T07:10:45Z
dc.date.accessioned2023-03-07T19:14:19Z
dc.date.available2017-10-08T07:10:45Z
dc.date.available2023-03-07T19:14:19Z
dc.date.created2017-10-08T07:10:45Z
dc.identifier1873-5649
dc.identifierhttps://reunir.unir.net/handle/123456789/5678
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2015.04.026
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900446
dc.description.abstractWe present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence analysis leads to more precise error bounds and to a better information on the location of the solution than the corresponding ones in earlier studies such as [2,6,9,11,14,15,17,20,22-26]. Numerical examples validating the theoretical results are also provided in this study. (C) 2015 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherApplied Mathematics and Computation
dc.relation;vol. 262
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0096300315004774?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectsecant method
dc.subjectBartsch space
dc.subjectmajorizing sequence
dc.subjectdivided difference
dc.subjectFrechet derivative
dc.subjectJCR
dc.subjectScopus
dc.titleNew semilocal and local convergence analysis for the Secant method
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución