dc.creator | Magreñán, Á. Alberto (1) | |
dc.creator | Argyros, Ioannis K | |
dc.date.accessioned | 2017-10-08T07:10:45Z | |
dc.date.accessioned | 2023-03-07T19:14:19Z | |
dc.date.available | 2017-10-08T07:10:45Z | |
dc.date.available | 2023-03-07T19:14:19Z | |
dc.date.created | 2017-10-08T07:10:45Z | |
dc.identifier | 1873-5649 | |
dc.identifier | https://reunir.unir.net/handle/123456789/5678 | |
dc.identifier | http://dx.doi.org/10.1016/j.amc.2015.04.026 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5900446 | |
dc.description.abstract | We present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence analysis leads to more precise error bounds and to a better information on the location of the solution than the corresponding ones in earlier studies such as [2,6,9,11,14,15,17,20,22-26]. Numerical examples validating the theoretical results are also provided in this study. (C) 2015 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | Applied Mathematics and Computation | |
dc.relation | ;vol. 262 | |
dc.relation | http://www.sciencedirect.com/science/article/pii/S0096300315004774?via%3Dihub | |
dc.rights | restrictedAccess | |
dc.subject | secant method | |
dc.subject | Bartsch space | |
dc.subject | majorizing sequence | |
dc.subject | divided difference | |
dc.subject | Frechet derivative | |
dc.subject | JCR | |
dc.subject | Scopus | |
dc.title | New semilocal and local convergence analysis for the Secant method | |
dc.type | Articulo Revista Indexada | |