dc.creatorMagreñán, Á. Alberto (1)
dc.creatorArgyros, Ioannis K
dc.date.accessioned2017-09-28T21:00:19Z
dc.date.accessioned2023-03-07T19:14:05Z
dc.date.available2017-09-28T21:00:19Z
dc.date.available2023-03-07T19:14:05Z
dc.date.created2017-09-28T21:00:19Z
dc.identifier1873-5649
dc.identifierhttps://reunir.unir.net/handle/123456789/5608
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2014.05.078
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900376
dc.description.abstractWe present a new sufficient semilocal convergence conditions for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in cases not covered in other studies such as Dennis (1971) [12], Ezquerro et al. (2000, 2010) [13,14], Kornstaedt (1975) [18], Potra and Ptak (1984) [24], Potra (1985, 1979, 1982, 1981, 1984) [23,25,26,27,28], Proinov (2010) [29], Schmidt (1978) [31] or Yamamoto (1987) [32]. The advantages of our approach also include a tighter convergence analysis under the same computational cost. Applications, where the older convergence criteria are not satisfied but the new convergence criteria are satisfied are also given in this study. (C) 2014 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherApplied Mathematics and Computation
dc.relation;vol. 242
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0096300314007656?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectNewton-like method
dc.subjectbanach space
dc.subjectsemilocal convergence
dc.subjectmajorizing sequence
dc.subjectdivided difference
dc.subjectFrechet derivative
dc.subjectJCR
dc.subjectScopus
dc.titleOptimizing the applicability of a theorem by F. Potra for Newton-like methods
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución