dc.creatorLópez-Quintero, J F
dc.creatorCueva Lovelle, Juan Manuel
dc.creatorGonzález-Crespo, Rubén (1)
dc.creatorGarcía-Díaz, Vicente
dc.date.accessioned2017-08-09T14:03:46Z
dc.date.accessioned2023-03-07T19:13:26Z
dc.date.available2017-08-09T14:03:46Z
dc.date.available2023-03-07T19:13:26Z
dc.date.created2017-08-09T14:03:46Z
dc.identifier1433-7479
dc.identifierhttps://reunir.unir.net/handle/123456789/5378
dc.identifierhttps://doi.org/10.1007/s00500-016-2437-y
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900157
dc.description.abstractThis article describes the development of a functional architecture for personal knowledge management (PKM), defined from the lessons-learnt concept registered in a mass-use social network analyzed with an algorithm of machine learning. This functional architecture applies, in practical manner, the implementation of a registry system of the personal lessons learnt in the cloud through a Facebook social network. The process starts by acquiring data from the connection to a non-relational database (NoSql) in Amazon’s SimpleDB and to which a complementary analysis algorithm of machine learning has been configured for the semantic analysis of the information registered from lessons learnt and, thus, to study the generation of organizational knowledge management from PKM. The result is the design of a functional architecture that permits integrating the Web 2.0 application and a semantic analysis algorithm from unstructured information by applying machine learning techniques.
dc.languageeng
dc.publisherSoft Computing
dc.relationhttps://link.springer.com/article/10.1007/s00500-016-2437-y
dc.rightsrestrictedAccess
dc.subjectknowledge management
dc.subjecttacit knowledge
dc.subjectknowledge model
dc.subjectorganizational learning
dc.subjectJCR
dc.subjectScopus
dc.titleA personal knowledge management metamodel based on semantic analysis and social information
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución