dc.creatorMagreñán, Á. Alberto (1)
dc.creatorArgyros, Ioannis K
dc.date.accessioned2017-08-07T15:23:23Z
dc.date.accessioned2023-03-07T19:13:18Z
dc.date.available2017-08-07T15:23:23Z
dc.date.available2023-03-07T19:13:18Z
dc.date.created2017-08-07T15:23:23Z
dc.identifier1872-7166
dc.identifierhttps://reunir.unir.net/handle/123456789/5336
dc.identifierhttps://doi.org/10.1016/j.matcom.2015.08.002
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900115
dc.description.abstractWe present a new convergence analysis, for the secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence analysis leads to more precise error bounds and to a better information on the location of the solution than the corresponding ones in earlier studies. Numerical examples validating the theoretical results are also provided in this study. (C) 2015 International Association for Mathematics and Computers in Simulation (IMACS).
dc.languageeng
dc.publisherMathematics and Computers in Simulation
dc.relation;vol. 119
dc.relationhttp://dl.acm.org/citation.cfm?id=2840449
dc.rightsclosedAccess
dc.subjectsecant method
dc.subjectbanach space
dc.subjectmajorizing sequence
dc.subjectdivided difference
dc.subjectFrechet derivative
dc.subjectJCR
dc.subjectScopus
dc.titleNew improved convergence analysis for the secant method
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución