dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto (1)
dc.date.accessioned2017-08-07T14:10:12Z
dc.date.accessioned2023-03-07T19:13:17Z
dc.date.available2017-08-07T14:10:12Z
dc.date.available2023-03-07T19:13:17Z
dc.date.created2017-08-07T14:10:12Z
dc.identifier1873-5649
dc.identifierhttps://reunir.unir.net/handle/123456789/5331
dc.identifierhttps://doi.org/10.1016/j.amc.2016.07.012
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900110
dc.description.abstractWe present a local as well a semilocal convergence analysis for Newton's method in a Banach space setting. Using the same Lipschitz constants as in earlier studies, we extend the applicability of Newton's method as follows: local case: a larger radius is given as well as more precise error estimates on the distances involved. Semilocal case: the convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. Numerical examples further justify the theoretical results.
dc.languageeng
dc.publisherApplied Mathematics and Computation
dc.relation;vol. 292
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0096300316304428?via%3Dihub
dc.rightsclosedAccess
dc.subjectNewton’s method
dc.subjectbanach space
dc.subjectlocal/semilocal convergence
dc.subjectKantorovich hypothesis
dc.subjectJCR
dc.subjectScopus
dc.titleExtending the applicability of the local and semilocal convergence of Newton's method
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución