dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto (1)
dc.creatorOrcos, Lara (1)
dc.creatorSicilia, Juan Antonio (1)
dc.date.accessioned2017-08-07T13:53:49Z
dc.date.accessioned2023-03-07T19:13:17Z
dc.date.available2017-08-07T13:53:49Z
dc.date.available2023-03-07T19:13:17Z
dc.date.created2017-08-07T13:53:49Z
dc.identifier1572-8897
dc.identifierhttps://reunir.unir.net/handle/123456789/5329
dc.identifierhttps://doi.org/10.1007/s10910-016-0722-8
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900108
dc.description.abstractWe present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639-653, 2010, Appl Math Lett 25(12):2209-2217, 2012, Appl Math Comput 219(24):11341-11347, 2013, Appl Math Comput 219(15):7954-7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr,chet derivative and divided differences of order one. Numerical examples are also provided in this work.
dc.languageeng
dc.publisherJournal of Mathematical Chemistry
dc.relation;vol. 55, nº 7
dc.relationhttps://link.springer.com/article/10.1007/s10910-016-0722-8
dc.rightsclosedAccess
dc.subjecttwo-step Newton's method
dc.subjectbanach space
dc.subjectFrechet derivative
dc.subjectdivided difference of first order
dc.subjectlocal/semilocal convergence
dc.subjectJCR
dc.subjectScopus
dc.titleLocal convergence of a relaxed two-step Newton like method with applications
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución