dc.creatorGarcía-Olivo, Martín
dc.creatorGutiérrez, José M
dc.creatorMagreñán, Á. Alberto (1)
dc.date.accessioned2017-08-07T12:24:39Z
dc.date.accessioned2023-03-07T19:13:17Z
dc.date.available2017-08-07T12:24:39Z
dc.date.available2023-03-07T19:13:17Z
dc.date.created2017-08-07T12:24:39Z
dc.identifier1879-1778
dc.identifierhttps://reunir.unir.net/handle/123456789/5326
dc.identifierhttps://doi.org/10.1016/j.cam.2016.02.040
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5900105
dc.description.abstractIn this paper we explore some properties of the well known root-finding Chebyshev’s method applied to polynomials defined on the real field. In particular we are interested in showing the existence of extraneous fixed points, that is fixed points of the iteration map that are not root of the considered polynomial. The existence of such extraneous fixed points is a specific property in the dynamical study of Chebyshev’s method that does not happen in other known iterative methods as Newton’s or Halley’s methods. In addition, in this work we consider other dynamical aspects of the method as, for instance, the Feigenbaum bifurcation diagrams or the parameter plane.
dc.languageeng
dc.publisherJournal of Computational and Applied Mathematics
dc.relation;vol. 38
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0377042716300966?via%3Dihub#!
dc.rightsclosedAccess
dc.subjectChebyshev’s method
dc.subjectnonlinear equations
dc.subjectiterative methods
dc.subjectreal dynamics
dc.subjectJCR
dc.subjectScopus
dc.titleA first overview on the real dynamics of Chebyshev's method
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución