dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto (1)
dc.date.accessioned2017-04-21T11:59:00Z
dc.date.accessioned2023-03-07T19:11:49Z
dc.date.available2017-04-21T11:59:00Z
dc.date.available2023-03-07T19:11:49Z
dc.date.created2017-04-21T11:59:00Z
dc.identifierArgyros, I. .K & Magreñán, A. .A. (2015). On the convergence of an optimal fourth-order family of methods and its dynamics. Applied Mathematics and Computation, 252(1), 336-346.
dc.identifier0096-3003
dc.identifierhttps://reunir.unir.net/handle/123456789/4790
dc.identifierhttps://doi.org/10.1016/j.amc.2014.11.074
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5899596
dc.description.abstractIn this paper, we present the study of the semilocal and local convergence of an optimal fourth-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials is studied. Some anomalies are found in this family be means of studying the dynamical behavior. Parameter spaces are shown and the study of the stability of all the fixed points is presented.
dc.languageeng
dc.publisherApplied Mathematics and Computation
dc.relation;vol. 252
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0096300314016063
dc.rightsrestrictedAccess
dc.subjectbanach space
dc.subjectmajorizing sequence
dc.subjectlocal/semilocal convergence
dc.subjectcomplex dynamics
dc.subjectJCR
dc.subjectScopus
dc.titleOn the convergence of an optimal fourth-order family of methods and its dynamics
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución