dc.creatorArgyros, Ioannis K
dc.creatorCordero, Alicia
dc.creatorMagreñán, Á. Alberto (1)
dc.creatorTorregrosa, Juan Ramón
dc.date.accessioned2017-04-10T14:24:04Z
dc.date.accessioned2023-03-07T19:11:39Z
dc.date.available2017-04-10T14:24:04Z
dc.date.available2023-03-07T19:11:39Z
dc.date.created2017-04-10T14:24:04Z
dc.identifierIoannis K. Argyros, Alicia Cordero, Ángel Alberto Magreñán, Juan Ramón Torregrosa, On the convergence of a higher order family of methods and its dynamics, Journal of Computational and Applied Mathematics, Volume 309, 1 January 2017, Pages 542-562, ISSN 0377-0427, http://doi.org/10.1016/j.cam.2016.04.022.
dc.identifier0377-0427
dc.identifierhttps://reunir.unir.net/handle/123456789/4718
dc.identifierhttps://doi.org/10.1016/j.cam.2016.04.022
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5899528
dc.description.abstractIn this paper, we present the study of the local convergence of a higher-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials is studied. Some anomalies are found in this family by means of studying the associated rational function. Parameter spaces are shown and the study of the stability of all the fixed points is presented.
dc.languageeng
dc.publisherJournal of Computational and Applied Mathematics
dc.relation;vol. 309
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0377042716301959
dc.rightsrestrictedAccess
dc.subjectbanach space
dc.subjectmajorizing sequence
dc.subjectlocal/semilocal convergence
dc.subjectcomplex dynamics
dc.subjectJCR
dc.subjectScopus
dc.titleOn the convergence of a higher order family of methods and its dynamics
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución