dc.creatorMagreñán, Á. Alberto (1)
dc.creatorArgyros, Ioannis K
dc.date.accessioned2017-04-04T14:29:57Z
dc.date.accessioned2023-03-07T19:11:35Z
dc.date.available2017-04-04T14:29:57Z
dc.date.available2023-03-07T19:11:35Z
dc.date.created2017-04-04T14:29:57Z
dc.identifierÁ. Alberto Magreñán, Ioannis K. Argyros, On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence, Journal of Computational and Applied Mathematics, Volume 298, 15 May 2016, Pages 236-251, ISSN 0377-0427
dc.identifier0377-0427
dc.identifierhttps://reunir.unir.net/handle/123456789/4692
dc.identifierhttps://doi.org/10.1016/j.cam.2015.11.036
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5899504
dc.description.abstractWe study the local convergence of Chebyshev–Halley methods with six and eight order of convergence to approximate a locally unique solution of a nonlinear equation. In Sharma (2015) (see Theorem 1, p. 121) the convergence of the method was shown under hypotheses reaching up to the third derivative. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamics of these methods are also studied. Finally, numerical examples examining dynamical planes are also provided in this study to solve equations in cases where earlier studies cannot apply.
dc.languageeng
dc.publisherJournal of Computational and Applied Mathematics
dc.relation;vol. 298
dc.relationhttp://www.sciencedirect.com/science/article/pii/S0377042715005907
dc.rightsrestrictedAccess
dc.subjectChebyshev–Halley methods
dc.subjectlocal convergence
dc.subjectorder of convergence
dc.subjectdynamics of a method
dc.subjectJCR
dc.subjectScopus
dc.titleOn the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución