dc.contributorIBM Watson Hlth
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-11-30T15:42:59Z
dc.date.accessioned2022-12-20T14:52:30Z
dc.date.available2022-11-30T15:42:59Z
dc.date.available2022-12-20T14:52:30Z
dc.date.created2022-11-30T15:42:59Z
dc.date.issued2022-07-01
dc.identifierIeee Signal Processing Magazine. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 39, n. 4, p. 96-106, 2022.
dc.identifier1053-5888
dc.identifierhttp://hdl.handle.net/11449/237932
dc.identifier10.1109/MSP.2022.3155906
dc.identifierWOS:000818887300009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5417986
dc.languageeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relationIeee Signal Processing Magazine
dc.sourceWeb of Science
dc.titleExplainability of Methods for Critical Information Extraction From Clinical Documents A survey of representative works
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución