dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniv Fed Triangulo Mineiro UFTM
dc.contributorUniv Granada
dc.date.accessioned2022-11-30T13:46:46Z
dc.date.accessioned2022-12-20T14:51:32Z
dc.date.available2022-11-30T13:46:46Z
dc.date.available2022-12-20T14:51:32Z
dc.date.created2022-11-30T13:46:46Z
dc.date.issued2022-09-10
dc.identifierJournal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.
dc.identifier1023-6198
dc.identifierhttp://hdl.handle.net/11449/237854
dc.identifier10.1080/10236198.2022.2119140
dc.identifierWOS:000852168300001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5417910
dc.description.abstractWe study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationJournal Of Difference Equations And Applications
dc.sourceWeb of Science
dc.subjectBivariate orthogonal polynomials
dc.subjectFreud orthogonal polynomials
dc.subjectThree term relations
dc.subjectMatrix Painleve: type difference equations
dc.titleTwo variable Freud orthogonal polynomials and matrix Painleve-type difference equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución