dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorHumber Inst Technol & Adv Learning
dc.date.accessioned2022-11-30T13:44:54Z
dc.date.accessioned2022-12-20T14:50:40Z
dc.date.available2022-11-30T13:44:54Z
dc.date.available2022-12-20T14:50:40Z
dc.date.created2022-11-30T13:44:54Z
dc.date.issued2021-01-01
dc.identifierProceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021). New York: Ieee, 6 p., 2021.
dc.identifier2166-0727
dc.identifierhttp://hdl.handle.net/11449/237784
dc.identifierWOS:000824588500284
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5417840
dc.description.abstractMining of frequent patterns and association rules is a Data Mining task that aims to determine consistent relationships among elements in a transaction database. Algorithms that consider the absence of elements perform the generation of so-called negative rules which result in associations of great interest for some applications, enabling it to obtain extra knowledge in comparison to the positive case. This type of association presents a problem regarding the increased amount of generated rules which demands adequate computational resources. This study presents a systematic review with the aim of grouping the concepts of the main contemporary works on this topic, in order to assist the development of future works in this subject.
dc.languagepor
dc.publisherIeee
dc.relationProceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021)
dc.sourceWeb of Science
dc.subjectData mining
dc.subjectFrequent patterns
dc.subjectNegative association rules
dc.subjectParallel algorithms
dc.subjectSystematic literature review
dc.titleMining negative rules: a literature review focusing on performance
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución