dc.contributorUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-11-30T13:42:21Z
dc.date.accessioned2022-12-20T14:49:39Z
dc.date.available2022-11-30T13:42:21Z
dc.date.available2022-12-20T14:49:39Z
dc.date.created2022-11-30T13:42:21Z
dc.date.issued2022-01-01
dc.identifierProceedings Of The 17th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications (ivapp), Vol 3. Setubal: Scitepress, p. 203-209, 2022.
dc.identifier2184-4321
dc.identifierhttp://hdl.handle.net/11449/237700
dc.identifier10.5220/0010991000003124
dc.identifierWOS:000777508400019
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5417756
dc.description.abstractVisualization techniques have been applied to reasoning about complex machine learning models. These visual approaches aim to enhance the understanding of black-box models' decisions or guide in hyperparameters configuration, such as the number of layers and neurons/filters in deep neural networks. While several works address the architectural tuning of convolutional neural networks (CNNs), only a few works face the problem from a semi-automatic perspective. This work presents a novel application of the Bayesian Case Model that uses visualization strategies to convey the most important filters of convolutional layers for image classification. A heatmap coordinated with a scatterplot visualization emphasizes the filters with the most contribution to the CNN prediction. Our methodology is evaluated on a case study using the MNIST dataset.
dc.languageeng
dc.publisherScitepress
dc.relationProceedings Of The 17th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications (ivapp), Vol 3
dc.sourceWeb of Science
dc.subjectCNN Pruning
dc.subjectCase-based Reasoning
dc.subjectVisualization
dc.titleSemi-automatic CNN Architectural Pruning using the Bayesian Case Model and Dimensionality Reduction Visualization
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución