dc.contributor | Higuti, Ricardo Tokio [UNESP] | |
dc.contributor | Martinez-Graullera, Oscar [UNESP] | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2022-10-31T14:34:00Z | |
dc.date.accessioned | 2022-12-20T14:44:32Z | |
dc.date.available | 2022-10-31T14:34:00Z | |
dc.date.available | 2022-12-20T14:44:32Z | |
dc.date.created | 2022-10-31T14:34:00Z | |
dc.date.issued | 2022-09-02 | |
dc.identifier | http://hdl.handle.net/11449/237288 | |
dc.identifier | 33004099080P0 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5417355 | |
dc.description.abstract | Ultrasonic images have an important contribution to medical diagnosis and nondestructive testing. One strategy to generate an image is to use an array, which is a transducer composed of a set of piezoelectric elements, that emits several wavefronts and samples the reflected waves. An important physical characteristic of arrays is their dimension. The wider the array extension, the better the lateral resolution of the generated image will be. Additionally, a construction recommendation for arrays is that the centre of their elements must be spaced by a distance (pitch) less or equal to 0.5λ, where λ is the generated wavelength by the transducer. Thus, the images generated by these arrays do not present artefacts caused by the grating lobes. The recommendation for using arrays is that it has to be the wider array possible, respecting the pitch recommendation. However, the data volume, resource, and manufacturing cost proportionally increase as the number of elements in the array rises, which might be impractical to use this array depending on the application. This thesis investigates techniques to reduce the use of resources in ultrasonic systems aiming to achieve images with high lateral resolution and mitigate any disadvantages. In the first part of this thesis, the linear sparse arrays, which are arrays that pitch higher than 0.5λ are studied. A new strategy to design these arrays is proposed, where a new mathematical codification for sparse arrays and fitness function based on the equation of energy and entropy of the PSFs (Point Spread Function) are presented. Subsequently, stochastic optimization algorithms are used to design sparse configurations. The proposed fitness function was compared with the most used fitness function in the literature based on the radiation pattern. The sparse arrays found using the proposed fitness function generated images with a balance between contrast and lateral resolution. Moreover, it was noticed that the fitness function proposed in the literature has inconsistencies when evaluating sparse array configurations which do not happen with the proposed fitness function. Next, a new data acquisition strategy for synthetic aperture for two-dimensional arrays that are not in a grid is proposed. This strategy is based on analyzing the projections of the elements of the coarray and keeping only the combinations of emitter and receiver elements that are most important for image generation. Consequently, the number of acquisitions and data volume of sparse two-dimensional apertures, whose elements are not positioned in a grid, is reduced, as well as the image generation time. The results indicate that it is possible to reduce the number of acquiring signals without compromising the quality of the ultrasonic image generated. In addition, two figures of merit based on the spatial distribution of the elements were used to evaluate sparse 2D arrays. A study of these parameters and how they influence the energy irradiated by arrays is done, and a fitness function is created. Then, a strategy to design a sparse 2D array is proposed using the simulated annealing algorithm. The radiation pattern analysis of the sparse arrays obtained from the search algorithm shown that the aperture generated images with high lateral resolution and low artefact intensities. The radiation pattern analysis of the sparse arrays obtained from the search algorithm showed that the aperture generated images with high lateral resolution and low artefact intensities. This thesis has three main contributions to ultrasonic systems that reduce manufacturing and computational costs. | |
dc.description.abstract | Imagens ultrassônicas possuem importante papel no diagnóstico médico e ensaio não destrutivo. Uma das alternativas para geração de imagens consiste em utilizar um array, um transdutor composto por um conjunto de elementos piezelétricos, para gerar diversas frentes de ondas e amostrar suas reflexões. Uma característica física importante para construção dos arrays é a sua dimensão. Quanto maior a extensão do array, melhor será a resolução lateral da imagem gerada. Além disso, uma recomendação de fabricação dos arrays é que o centro do seus elementos precisam estar espaçados por uma distância (pitch) menor ou igual a 0, 5λ, em que λ é o comprimento da onda gerada pelo transdutor. Desta forma, as imagens geradas por esses arrays não apresentam artefatos causados pelos lóbulos de espaçamento. A recomendação para o uso de arrays é que seja o maior array possível, respeitando a restrição de pitch. No entanto, o volume de dados, recursos e custo de fabricação aumentam proporcionalmente à medida que o número de elementos no array aumenta, o que pode torná-lo impraticável de- pendendo da aplicação. Esta tese propõe técnicas para reduzir o uso de recursos em sistemas ultrassônicos visando obter imagens com alta resolução lateral e mitigar eventuais desvantagens. No primeiro estágio, arrays esparsos lineares cujos pitches são superiores que 0, 5λ são estudados. Propõe-se uma nova estratégia para projetar esses arrays, na qual é apresentada uma nova codificação matemática para os arrays esparsos e uma função de aptidão baseada na equação de energia e entropia das PSFs (Point Spread Function). Posteriormente, algoritmos de otimização estocástico são utilizados para desenhar as configurações esparsas lineares. A função aptidão proposta foi comparada com a função aptidão mais utilizada na literatura, baseada no diagrama de radiação. Identificou-se que a função proposta valoriza configurações de arrays esparsos que geram imagens com melhor equilíbrio entre contraste e resolução lateral. Além disso, foi identificado que a função aptidão proposta na literatura apresenta inconsistências ao avaliar os arrays esparsos, o que não ocorre na função proposta. Em seguida, uma nova estratégia de aquisição de dados para arrays bidimensionais que não estão em uma malha é proposta. A estratégia se baseia em analisar as projeções dos elementos do coarray e manter somente as combinações de elementos emissores e receptores mais importantes para a geração de imagens. Assim, o número de aquisições e volume de dados de aberturas esparsas bidimensionais, cujos elementos não estão posicionados em uma malha, é reduzido, bem como o tempo de geração de imagens. As análises dos resultados indicaram a viabilidade em reduzir os sinais adquiridos sem comprometer a qualidade das imagens geradas. Adicionalmente, foram desenvolvidas duas figuras de mérito baseadas na análise da disposição espacial dos elementos, que por sua vez foram utilizadas para avaliar arrays 2D esparsos. A relação entre as figuras de mérito desenvolvidas e a energia irradiada pelos arrays foi estudada e, a partir desta análise, uma função custo desenvolvida. Em seguida, é apresentada uma estratégia para projetar arrays 2D esparsos utilizando o algoritmo simulated annealing. As análises do diagrama de radiação das aberturas bidimensionais esparsas obtidas pelo algoritmo de busca possuem características desejáveis com alta resolução lateral e baixa intensidade nos artefatos. A tese possui três contribuições para os sistemas de geração de imagens por ultrassom que reduzem os custos de manufatura e computacional. | |
dc.language | eng | |
dc.publisher | Universidade Estadual Paulista (Unesp) | |
dc.rights | Acesso restrito | |
dc.subject | Algoritmos de Otimização Estocástico | |
dc.subject | Arrays 2D Esparsos | |
dc.subject | Array Lineares Esparsos | |
dc.subject | Metaheurísticas | |
dc.subject | Linear Sparse Arrays | |
dc.subject | Metaheuristics | |
dc.subject | Stochastic Optimization Algorithms | |
dc.subject | 2D Sparse Arrays | |
dc.title | Optimization in ultrasonic imaging systems: Use of metaheuristics to design sparse arrays and a heuristic to create an acquisiton system | |
dc.type | Tesis | |