dc.contributorUniversidade Estadual Paulista (UNESP)
dc.contributorUniversidade Federal de Sergipe (UFS)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorFederal University Of São João Del-Rei
dc.date.accessioned2022-05-01T12:09:40Z
dc.date.accessioned2022-12-20T03:47:09Z
dc.date.available2022-05-01T12:09:40Z
dc.date.available2022-12-20T03:47:09Z
dc.date.created2022-05-01T12:09:40Z
dc.date.issued2021-10-18
dc.identifierACM International Conference Proceeding Series, p. 56-63.
dc.identifierhttp://hdl.handle.net/11449/233991
dc.identifier10.1145/3488162.3488210
dc.identifier2-s2.0-85122658037
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5414091
dc.description.abstractAugmented and virtual reality can be used in motor or neuromotor rehabilitation clinics to make patients become more motivated and engaged with the treatment. The interaction with the applications stimulates the patient to exercise the impaired limb while enjoying the experience. This work takes the real-time tracking data generated from optical and wearable motion capture devices and uses it to feed machine learning algorithms. The data processing makes the movements with different durations consistent and enables the convergence of the models. Also, the data format is independent of the camera position and user. One of the experiments presented recognizes eight movements being executed in the system.
dc.languageeng
dc.relationACM International Conference Proceeding Series
dc.sourceScopus
dc.subjectAugmented reality
dc.subjectComputer vision
dc.subjectMotion capture
dc.subjectSupervised machine learning
dc.titleClassification of Human Movements with Motion Capture Data in a Motor Rehabilitation Context
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución